
TASI Lectures: Cosmology III

Numbers and Defintions

1. Apparent magnitude m ≡ −2.5 log10(F ) + constant, where F is flux

2. Absolute magnitude M = 4.76 + 2.5 log10(L/L�), w/ L the luminosity and L� =

3.826× 1033 ergs/sec is the sun’s luminosity.

3. Since the flux scales as the luminosity divided by distance squared,

m−M = 5 log10(dL/10 pc).

4. Comoving distance to scale factor a in a flat universe is χ(a) =
∫ 1

a
da′/(a′2H(a′)).

5. Comoving Horizon, η(a) ≡
∫ a

0
da′/(a′2H(a′)).

6. Luminosity distance in a flat universe,

dL(a) = χ(a)/a = χ(z)× (1 + z) = (1 + z)
∫ z

0

dz′/H(z′).

7. Comoving Hubble Radius, (aH)−1.

8. Fourier convention:

f̃(~k) =
∫

d3xe−i~k·~xf(~x).

Both ~k and ~x are comoving so do not change as the universe expands.

9. Power spectrum:

〈δ̃(~k)δ̃(~k′)〉 = (2π)3δ3(~k − ~k′)P (k).

Here the angular brackets denote averages over all possible realizations. I.e., a given

k−mode has its amplitude drawn from a Gaussian distribution with a variance given

by the power spectrum. The δ3() on the right hand side is the Dirac delta function.

Results

1. Power spectrum of scalar perturbations produced during slow roll inflation with a

single inflaton field:

PΦ(k) =
2
9

(8πG)2
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≡ ASkns−4.

2. Tilt in slow-roll inflation with a single inflaton field:

ns = 1− 3
8πG

(
V ′

V
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+
2

8πG

V ′′

V
.



Exercises

1. The distance modulus µ is defined as m−M . Plot the distance modulus as a function

of redshift in a flat, matter dominated universe Ωm = 1. The requisite integral can be

done analytically in this case. Then plot µ when Ωm = 0.26 and Ωde = ΩΛ = 0.74. For

this you need to compute the integral numerically. [Once you have the code running,

it might fun to consider other dark energy models, with a variety of equations of

state.] Which curve does SN1997ap (with m = 24.32 at z = 0.83) come closer to?

Use SN1992 (at z = 0.026 with m = 16.08) to determine M .

2. Show that the conformal time η scales as a1/2 in a matter dominated universe and

as a in one dominated by radiation. Show that in a universe with only matter and

radiation [i.e. probably our universe at redshifts earlier than one],

η =
2√

Ωmh2

[√
a + aeq −

√
aeq

]
where aeq is the epoch at which the matter density is equal to the radiation density.

3. It is convenient in many models of inflation to define a slow roll parameter ε ≡

d(H−1)/dt. As you might expect, since H is roughly constant, ε is typically small

throughout inflation. In fact, one definition of the end of inflation is the epoch at

which ε = 1. Use the equation of motion for a scalar field in an expanding universe

d2φ

dt2
+ 3H

dφ

dt
+ V ′ = 0

in the slow-roll limit (where the second derivative is much smaller than H times the

first derivative) to derive an expression relating ε to the inflaton potential and its

derivatives:

ε =
1

16πG

(
V ′

V

)2

.

3. Determine the predictions of an inflationary model with a quartic potential,

V (φ) = λφ4.

(a) Compute the slow roll parameter ε in terms of φ.

(b) Determine φe, the value of the field at which inflation ends, by setting ε = 1 at

the end of inflation.



(c) Find the value of φ when the mode k = a0H0 leaves the horizon during inflation.

To do this, assume 60 e-folds. That is, assume that the universe inflates by a factor

of e60 between the time when this mode exits the horizon and time at which inflation

ends. Rewrite

N =
∫ te

t

dt′H(t′)

as an integral over φ to determine φ at horizon exit. Show that this mode leaves the

horizon when φ2 ' 60m2
Planck/π.

(e) Determine the predicted value of ns.

(f) Estimate the scalar amplitude in terms of λ. As a rough estimate, assume that

k3PΦ(k) for this mode is equal to 10−8. What value does this imply for λ?

This model illustrates many of the features of contemporary models. In it, (i) the

field is of order – even greater than – the Planck scale, but (ii) the energy scale V is

much smaller because of (iii) the very small coupling constant.


